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AbItract-A rectangular elastiC Cosserat plate under uOlform uniaxial compression can buckle
10 a bending mode at low compression levels. or in a bulling mode at higher levels. Shear
deformation in each mode is governed by a corresponding constitutive coefficleRt. denoted by
Clt) in the bending mode and by CltI in the bulling mode. By comparing the eiaencondltions in
the bendang mode for a Cosserat plate and a three-dimensional plate. a value for the shear
coefficient Clt) is determined. However. a comparison of eigenconditions for the bulling mode
discloses an anomaly. with the result that a value for CltI cannot be obtained by this method.

I. INTRODUCTION

Biot[l, 2]t was apparently the first to treat plate buckling using three-dimensional
elasticity theory, and obtained an eigencondition in the bending mode for a linear elastic
isotropic plate of arbitrary thickness. Subsequent work has mostly concerned plates
of incompressible or nearly incompressible materials. A comprehensive treatment of
buckling of thick elastic plates under compression, which includes a survey of work
on the problem, is presented in recent papers by Sawyers and Rivlin[3, 4]. Buckling
of compressed elastic Cosserat plates has been treated by Green and Naghdi[5] as an
application of the method of superposing small deformations on a large deformation of
a Cosserat surface. Since the coefficients in a quadratic strain energy function for an
elastic Cosserat plate are given explicitly by Naghdi in [6], it is convenient to compare
results for a Cosserat plate with those of a three-dimensional plate which also possesses
a quadratic strain energy function. Accordingly, the present paper includes results for
a three-dimensional plate with a quadratic strain energy function, obtained using the
three-dimensional theory of small deformations superposed on a large deformation[7].
While the strains associated with the bulging mode in both a Cosserat plate and a three
dimensional plate are so large that they could not exist in materials for which a quadratic
strain energy function is appropriate, these results are included since they are of some
theoretical interest in comparing a Cosserat plate with a three-dimensional plate. These
results could be useful in connection with buckling of elastic-plastic plates.

2. UNIFORM FINITE EXTENSION OF A COSSERAT PLATE UNDER UNIAXIAL
COMPRESSION

Green and Naghdi[5] treat flexural buckling of a square Cosserat plate under equal
biaxial compression. In the following, their treatment is modified for the case ofuniaxial
compression. The notation and terminology of [5] are used, except for the constitutive
coefficients which are stated in the notation of [6]. The initial large deformation is a
state of uniform finite extension, characterized now by the distinct extension ratios k l

.. 1 in the direction of compression, and k2 ~ I in the perpendicular direction. Also,
there is uniform thickness change described by the director component d3 = d ~ I.
In the state of uniform finite extension. convected surface coordinates ea coincide with
fixed rectangular Cartesian coordinates XI , X2 lying in the middle surface. The covariant
and contravariant components of the surface metric tensor referred to ea coordinates

t The result in (I] contains a misprint; the corrected form IS given in (2].
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in the undeformed plate are denoted by Aa13 and A a 13 , and in the currently deformed
plate by aal3 and aal3. Hence,

[

p
Am13 = ~

The strain measures describing the uniform finite extension are given by

(2.2)

with

Kia = O. (2.3)

The externally applied compressive load acts parallel to the XI axis. The compo
nents Nal of the contact force, the components Mal of the contact couple, and the
components -rri of the intrinsic surface director force referred to ea coordinates are
given by

'If' = 0, (2.4)

where Nil is a constant. The equilibrium conditions are satisfied trivially. These force
and couple components, except for the transverse shear components Na3, are related
to the kinematic variables eap, K,a and 8, by constitutive relations. For arbitrary de
formation of a homogeneous isotropic plate with a quadratic strain energy function,
these relations are [6],

and A~ is a measure of bending deformation defined by [5], eqn (2.21), which is zero
for uniform finite extension of a homogeneous plate. Also,

(a/A)II2'1fa = a3Aa'Y&'Y' (2.7)

(a/A)I/2'1f3 = a4&3 + a9A a13ea13 , (2.8)

(a/A) I12MPa = (asAaPA'Y& + Cl6Aa'YAP& + a,Aa&A P'Y)K'Y&' (2.9)

(a/A)I/2Ma3 = a sA a'Y K3'Y' (2.10)

where
In eqns (2.5)-(2.10), a, A are the determinants of aap, Amp, and the constitutive

coefficients ai, a2, ••• , a9 are given by

(2.11)

_ (l - V)2 C
ex.. - I - 2v '

1 - v
a2 = -2-C,

v(1 - v)
al = a9 = C,

I - 2v

as = vCh 2/12, a6 = a, = (1 - v)Ch 2/24,

a3 = 5(1 - v)C/12, as = 7(1 - v)Ch 2/240,
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and

where E is Young's modulus, v Poisson's ratio, and h the uniform thickness of the
undeformed plate.

The extension ratio k2 and director displacement 83 can be expressed in terms of
kl by using the conditions N22 = N22 = 0 and 'TT3 = O. Thus

k~ = I + v(l - k1>, (2.12)

Also, Nil = Nil, and finally Nil, can be expressed in terms of kl when eqns (2.12)
are used. It is convenient to introduce NA I as a measure of the axial load by putting

(2.13)

Relation (2.13) illustrates a characteristic peculiarity of a quadratic strain energy func
tion, namely, that axial compression rises to a maximum value as kl decreases from
unity, and then decreases to zero as kl - O. A three-dimensional plate behaves similarly.

3. SUPERPOSED SMALL SINUSOIDAL BUCKLING DEFORMATIONS ON
UNIAXIAL COMPRESSION IN A COSSERAT PLATE

Small buckling deformations are now considered to occur in a Cosserat plate loaded
in compression, which correspond to superposed small plane-strain deformations in a
three-dimensional plate. Buckling deformations in a Cosserat plate are described by
an incremental displacement vector and an incremental director displacement vector
with components UI and bl , respectively, referred to ea coordinates in the state of
uniform finite extension. In this configuration, it is recalled that the convected coor
dinates ea coincide with rectangular Cartesian coordinates. The buckling deformations
considered here are characterized by putting

U, = (UI, 0, w), (3.1)

where u .. W, b l and b3 are functions of el only.
The increments to the kinematic variables ea/h Kia and 8/ are denoted by e~Ii'

K;a and 8;. In view of eqns (2.1) and (3.1), they are

8i = b l + dW,I,

eil = UI."

Kil = bl.l ,

eb = eh = 0,

82 = o.

(3.2)

(3.3)

(3.4)

The components of the force and couple resultants referred to convected coor
dinates ea in the buckled plate are denoted by Na.1 + EJ{'a./, Ma./ + EM'a./ and ~ +
E'TT'/, where E = 1 is a coefficient which identifies quantities which vanish with the
superposed buckling deformation. The constitutive relations for the nonzero compo
nents of N'a.Ii , M'a.' and 'TT", obtained from eqns (2.5)-(2.10) using (3.2)-(3.4), are

N,II = N'II = [-Nil + kk1(a, + 2(2)]UI.1 + kkiCJ.9b), (3.5)

N''ll = N''ll = k[atlcikjul.1 + a9kjb)], (3.6)

M,II = kk1(as + CX6 + a?)b l ... (3.7)

M,22 = kkikjasb •. I , (3.8)

M,13 = kkiasb).1 (3.9)
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1l"1 = kkro.3(b l + dw,d,

1l"3 = k(o.4b3 + kro.9UI I),

(3.10)

(3.11 )

where k = (Ala)I/2 = (k 1k2)-I.

There are five nontrivial equilibrium conditions for determining the four displace
ment components UI, 11', bl and b3 , and the transverse shear N '13 • They are

(3.12)

(3.13)

The transverse shear N,·3 can be eliminated between (3.]2h and (3.13h. The result is

(3.14)

Equations (3.]2) .. (3.13)1' (3.13h and (3.14) now comprise a system offour equations
for UI, W, bl and b3 , when the constitutive relations (3.5)-(3.IJ) are used. As noted in
[5], these equations uncouple into two sets, one for wand b l , which describe bending
deformation, and the other for U I and b3 , which describe symmetric bulging or thinning
of the plate about the middle surface.

Buckling in the bending mode is governed by the two equations, which follow from
eqns (3.7), (3.10), (3.13). and (3.14),

krdo.3(b •.• + dW.II) + N/,I W,II = 0,

kr(Ch 2/J2)b •. 1I - o.3(b l + dW,I) = O.

(3.15)

(3.16)

In obtaining eqns (3.15) and (3.16), use is made of the expressions (2.11) for the con
stitutive coefficients. However, 0.3 in (3.15) and (3. ]6) is left unspecified. A solution
of (3. ]5) and (3. ]6) for sinusoidal buckling can be taken as

(3. ]7)

where A and B are arbitrary constants, and I is the half wavelength. For A, B :F 0,
eqns (3. ]5) and (3.16) are satisfied, provided

(3.18)

The eigencondition (3.]8) is now simplified by putting k l = 1 - PIE, where PIE ~ 1.
P can be identified with uniform compressive stress in a three.dimensional plate. When
just first-order terms in PIE and h2112 are retained, the eigencondition becomes, in view
of eqns (2.2), (2.12h and (2.13),

(3.19)

Thus the familiar Euler formula is recovered.
The equations governing the bulging mode, obtained from the equilibrium condI

tions (3.12), and (3.13h, along with the constitutive relations (3.5), (3.9) and (3.] 1), are

[N/,' + k1(o., + 2o.2)]UI.11 + kro.9b3., = 0,

kro.sb3•11 - o.4b3 - kro.9u,., = O.

(3.20)

(3.21)
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A solution for sinusoidal buckling can be constructed by puttmg

UI = A sin(1T8 I/l), (3.22)

where A and B are arbitrary constants. The eigenconditlon for a nontrivial solution can
be written

Q,1T2h2 I (l - v)2(l - kr)(2kt>-' - I
-/2- = kr . I - (I - 2v)(I - V)-2(1 - v2)(1 - kr)(2kr)-· '

where the coefficient Q, has been introduced, such that

(3.23)

(3.24)

Solutions exist just for values of k. for which the right side of (3.23) is positive, that
is, for

1 - v2 k 2 (l - 2v)(l + v)
--> I> .
3 - v2 3 - 3v - 2v2 (3.25)

As a typical example, for v = 0.25, k. must satisfy the bounds 0.565 > k. > 0.542,
and in this rather narrow range of values for k l , the thickness/wavelength ratio varies
between zero and infinity, 0 < hll < 00. The value of hll increases as k. decreases, that
is, as deformation increases. Thus the eigencondition (3.23) predicts that a thin plate
is more susceptible to buckling in the bulging mode than a thick plate. Compared to a
three-dimensional plate, this behavior is anomalous.

4. UNIFORM FINITE EXTENSION OF A THREE·DIMENSIONAL PLATE UNDER
UNIAXIAL COMPRESSION

In a three-dimensional rectangular plate in a state of uniform finite extension,
convected coordinates 0' are introduced which coincide with fixed rectangular Cartesian
coordinates y, referred to axes parallel to the edges of the plate. The Y. and Y3 axes lie
in the middle surface of the plate, with the Y. axis in the direction of externally applied
uniform compressive load. The notation of [7] is followed, in which the covariant and
contravariant metric tensors referred to the convected coordinates A' are denoted by
glJ and gli in the undeformed plate, and by GIj and Gli in the plate deformed by uniform
finite extensions AI. Hence, from [7], eqns (4.23) and (4.24),

glJ = 0

o

and

o

o

o

o g'J = 0

o

o

o

o

o ,g = (ArAiAi)-·, (4.1)

G = I, (4.2)

where g = Igu I, G = I Gu Iand au is the Kronecker delta. The contravariant symmetric
stress tensor -rU referred to the coordinates O' in the state of uniform finite extension
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has the form
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-p

o

o

o

o

o

o

o ,

o

(4.3)

where P is a constant which represents uniform compressive stress per unit area m the
currently deformed cross-section al = constant. For an isotropic plate under loading
described by eqn (4.3),

(4.4)

Constitutive relations for the stress components 1"J are derived from a strain energy
function. For an isotropic material, a strain energy function which is quadratic in the
strain components 'YIJ = (Gi.J - g1J)/2 can be formed from the strain invariants I, and
h defined by [7]. eqn (2.2.23). as

II = 3 + 2gi.J'Yu.

12 = 3 + 4gu'Yi.J + 2gUgmn('Yi.J'Ymn - 'Ylm'YJn)'

For uniform finite extension. these invariants can be written

(4.5)

(4.6)

II = A~ + A~ + A~. (4.7)

The strain energy function

A + 2.... 2 ....
W = 8 (II - 3) +"2 (211 - 12 - 3). (4.8)

where Aand .... are the Lame constants. coincides with the usual quadratic strain energy
function of linear isotropic elasticity. For finite deformation. W represents strain energy
per unit volume in the undeformed body. The constitutive relations[7], eqn (4.2.7). for
uniform finite extension have the typical form

(4.9)

where

<I> = 2(gIG)I/2 oW = 2(AI A2A3)-I[(A + 2....)(A~ + A~ + A~ - 3)/4 + ....], (4.10)
all

oW
'I' = 2(gIG)I/2 -I = - ....(AI A2A3). (4.11)a2

oW
p = 2(Glg) 1/2 - = o.

ah h = Gig. (4.12)

when evaluated using the strain energy function (4.8). An equation for ,-22 can be ob
tained from eqn (4.9) by the cyclic change of indices 1- 2 - 3 - 1. In view of eqns
(4.3) and (4.4), the constitutive equations for Til and ,-22 yield the relations

(4.13)
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From eqns (4.13) and (4.14) it can be noted that P at first increases as AI decreases
from unity, and then decreases to zero as AI - O. Thus a three-dimensional plate with
a quadratic strain energy function exhibits similar behavior to a Cosserat plate as noted
in eqn (2.13). The extension ratios AI, A2 = A3 in the three-dimensional plate can be
identified with the extension ratios k I and k2 in the Cosserat plate. However, a difference
is to be noted in that the director component d3 = d, which describes change of thick
ness in the Cosserat plate, does not coincide with the extension ratio A2 in th.e three
dimensional plate.

S. SUPERPOSED SMALL SINUSOIDAL BUCKLING DEFORMATIONS ON

UNIAXIAL COMPRESSION IN A THREE-DIMENSIONAL PLATE

A plane-strain perturbation describing buckling is now superposed on the uniform
finite extension of the plate. The incremental displacements are described by a vector
with components w, referred to the convected coordinates Of in the configuration (4.2),
with

W3 = o. (5.1)

Referred to the convected coordinates ef in the buckled plate, the components of the
contravariant symmetric stress tensor are denoted by T'J + ET'IJ, where E = 1 is again
a coefficient which identifies small quantities that vanish with the perturbation. Con
stitutive equations for the stress increments T"J are given directly in terms of W, by [7],
eqns (4.2.12) and (4.2.13), and have the form

Till = CIIWI.I + CI2 W2,2,

T '22 = C2I W I.I + C22 W 2.2,

when account is taken of eqn (5.1). Also,

(5.2)

(5.3)

(5.4)

(5.5)

For the strain energy function (4.8), the constitutive coefficients appearing in eqns
(5.2)-(5.4) reduce to

CII = P + (A + 2JAo)A~A2"2, (5.6)

C22 = (A + 2JAo)A~AI I, (5.7)

CI2 = -2AIA2"2[(A + 2JAo)(Ai + 2A~ - 3)/4 + JAo] + (A + 2JAo)AIt (5.8)

C21 = - P + CI2, (5.9)

C66 = JAoAIt (5.10)

when (4.3) and (4.4) are used. Relations (5.2)-(5.10) coincide with the usual relations
of linear isotropic elasticity for plane strain when P = 0 and AI = A2 = 1. In view of
eqns (5.1) and (5.2)-(5.5), the equilibrium conditions for the perturbation[7], eqn
(4.2.21),

(5.11)
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reduce to
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(5.12)

(5.13)

since TI' = - P is the only nonzero component of prestress in eqn (4.3). When the
constitutive relations (5.2)-(5.4) are used, the equilibrium equations (5.12) and (5.13)
become

(ell - 2P)WI.11 + (C21 + C66)W2.12 + C66W'.22 = 0,

(C66 - P)W2.11 + (e21 + C66)WI.'2 + C22W2.22 = o.

Solutions of eqns (5.14) and (5.15) for sinusoidal buckling can be taken as

(5.14)

(5.15)

W, = -sin(1T91Il)[C,!J.' sinh(1Tp,92/1) + C2!J.2 sinh(1TP2921/)), (5.16)

W2 = COS(1TO'/l)[C I cosh(1Tp,92/l) + C2 cosh(1Tp292/l)), (5.17)

or

WI = -sin(1T9'Il)[C3!J., cosh(1Tp,92/l) + C4 !J.2 cosh(1Tp29211»), (5.18)

W2 = COS(1To1/l)[C3 sinh(1Tp,921l) + C4 sinh(1TP292/l)), (5.19)

where ± p, and ± P2 are the roots of the fourth-order equation in P,

C22C66p4 - [C66(C66 - P) + C22(e11 - 2P)

- (C21 + C66)2)p
2 + (C66 - P)(CII - 2P) = 0, (5.20)

and

and C., ... ,C4 are arbitrary constants. Expressions (5.16) and (5.17) describe bending
of the plate, while (5.18) and (5.19) describe symmetric bulging or thinning of the plate
about the middle surface.

The surfaces of the plate 92 = ± A2h12, where h is the thickness of the undeformed
plate, are free from applied tractions. Hence the boundary condition[7), eqn (4.2.30),
assumes the form

T,12 = T,22 = 0, (5.21)

The eigencondition for the bending mode is obtained by requiring that the expressions
(5.16) and (5.17) satisfy the boundary conditions (5.21) when CI, C2 .,. O. The eigen
condition for the bending mode is

P2 !J.IPI + 1 C22P2 - C2'!J.2 P2 tanh[(1TPIA2h)/(21))
PI . !J.2P2 + 1 . C22PI - C2'!J.' = P, . tanh[(1Tp2A2h)/(21») .

Similarly, the eigencondition for the bulging mode is

PI . !J.' PI + 1 . C22P2 - CII1-'-2 PI tanh[(1Tp2A2h)/(21))
P2 1-'-2P2 + 1 C22PI - C2'1-'-' = P2 . tanh[(1TPIA2h)/(21)) .

(5.22)

(5.23)
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The eigencondition for the bending mode (S .22) can be expanded as a double series
in PIE, hll when PIE <t I and hll <t I. To proceed, it is noted first that when P = 0
and AI = A2 = I, the roots of (5.20) are pi = p~ = I. Thus the leading term on each
side of (5.22) is unity. The left side of (5.22) is expanded to the second order in the'
small quantities (pi - I), (p~ - 1). The right side is expanded in a series in hll, which
is' even in hll. The leading terms of unity cancel; (pi - p~) then appears as a common
factor in the remaining terms on both sides, and cancels. Then substitutions for AI, A2
are made by putting

AI = I - PIE, A2 = I + vPIE. (5.24)

Retention of just first-order terms in PIE and h2/12 yields the Euler formula (3.19).
As AI decreases from unity, the roots of eqn (5.20) are at first complex, and PI,

P2 can be taken as a complex conjugate pair with positive real parts. In the limit as
hll- 00, the two eigenconditions·, eqn (5.22) for the bending mode and eqn (5.23) for
the bulging mode, come into coincidence and have the solutions

AI = 0.625, 0.620, 0.612,

corresponding, respectively, to

v = 0.1, 0.25, 0.4.

(5.25)

The solutions describe localized surface instability.
For h/l <c 1, solutions of the eigencondition (5.23) for the bulaing mode can be

represented approximately by

(5.26)

where Ai is the value of AI for which the left side of eqn (5.23) equals unity, coincident
roots of (5.20) excluded, and f3 is the coefficient of the first term in the Taylor series
expansion of the left side about AI = Ai. Typical values of Ai are

Ai = 0.576,0.565,0.544,

and correspond, respectively, to

(5.27)

v = 0.1,0.25,0.4.

The roots ofeqn (5.20) are now pure imaginary, that is, pi, p~ < 0, and when the roots
are indexed such that ~ - pi > 0, then f3 > O. Relation (5.26) shows that a thick plate
buckles at a larger value of AI than a thin plate. The trend for a three-dimensional plate
is opposite to that for a Cosserat plate governed by eqn (3.23). Also, it is inferred by
eqn (5.26) that there are no solutions for AI < Ai.

Sawyers and Rivlin[4] obtained the results, for an incompressible neo-Hookean
material, that the critical value of AI in the bulling mode is reached first for the limiting
case h/l- 00, and that AI decreases monotonically as h/l decreases. Similar results
were also obtained by Burgess and Levinson[8] for a slightly compressible rubberlike
material which reduces to the neo-Hookean material in the incompressible case. An
exhaustive investigation of solutions of the eiaencondition (5.23) for the bulling mode
has not been carried out, but, in view of the results in [4] and [8], it can be expected
that solutions for AI lie in the range bounded by the values (5.25) and (5.27), with AI
decreasing as hll decreases. Rather perplexing is the observation that the lower bound
on AI for the three-dimensional plate (5.27) coincides with the upper bound on k l for
the Cosserat plate (3.25), at least for the three values of Poisson's ratio v = 0.1,0.25
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and 0.4. Thus there is no intersection of the admissible regions of AI and k. for the
bulging mode, and matching of the eigenconditions (3.23) for a Cosserat plate and (5.23)
or (5.26) for a three-dimensional plate to determine as is thwarted.

6 MATCHING CONDITION FOR DETERMINATION OF Q3

The eigenconditions (3.18) for a Cosserat plate and (5.22) for a three-dimensional
plate for buckling in the bending mode can be matched most conveniently to determine
the shear coefficient a3 in the limit as h/l- 00. The eigencondition (3.18) can be written,
in the limit as h/l- 00,

(6.1)

when eqns (2.2h, (2.11), (2.12) and (2.13) are used. The extension ratio k. is now
assigned the values (5.25), which then yield

a3/(Eh) = 0.287,0.265,0.247

corresponding respectively to

11 = 0.1, 0.25, 0.4.

(6.2)

(6.3)

The value for a3 listed in eqn (2.11) was obtained by matching the solution for
twisting of a rectangular Cosserat plate to the St. Venant solution for torsion of a three
dimensional plate. When a3 as given in eqn (2.11) is evaluated for the values ofPoisson's
ratio (6.3), the results are, respectively,

a3/(Eh) = 0.379, 0.333, 0.298. (6.4)

The values (6.2) are about 20% smaller than (6.4), but show the same trend to
decrease as Poisson's ratio increases. While it would be desirable for application of
the Cosserat theory to plate and shell buckling problems to determine a3 for h/l <c 1,
such a determination would require the rather formidable expansion of the eigencon
dition (5.22) for a three-dimensional plate to the second order in the small quantities
PIE and h2/l2•
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